How to Optimize Language Model Size for Deployment

The rise of language models, and more specifically large language models (LLMs), has been of such a magnitude that it has permeated every aspect of modern AI applications — from chatbots and search engines to enterprise automation and coding assistants.

Word Embeddings in Language Models

This post is divided into three parts; they are: • Understanding Word Embeddings • Using Pretrained Word Embeddings • Training Word2Vec with Gensim • Training Word2Vec with PyTorch • Embeddings in Transformer Models Word embeddings represent words as dense vectors in a continuous space, where semantically similar words are positioned close to each other.

Word Embeddings in Language Models

This post is divided into three parts; they are: • Understanding Word Embeddings • Using Pretrained Word Embeddings • Training Word2Vec with Gensim • Training Word2Vec with PyTorch • Embeddings in Transformer Models Word embeddings represent words as dense vectors in a continuous space, where semantically similar words are positioned close to each other.